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Abstract-The influence of thermal radiation exchanges inside of a circular tube combined with 
convective heat transfer is studied analytically. The tube has a uniform heat flux imposed at the wall 
by external means such as uniform electrical heating, and the wall temperature distribution is found 
from the analysis. The gas flowing within the tube is transparent to radiation and hence does not 
in#uence the radiation exchange between elements of the internal tube surface. The inside of the tube 
wall is assumed to be a diffuse gray surface, and the outside is perfectly insulated. The sohrtions are 
governed by seven independent parameters such as the wall emissivity, inlet gas temperature, and 
length4iameter ratio of the tube. Numerical examples are given to show the influence of these 
parameters and to demonstrate how radiation alters the wall temperatnre distribution that would 

exist for convection alone. 

NQMENCLATURE u JiS> 
specific heat of Md; x, 
tube diameter; 
geometric configuration factor for X, 
radiation from an element on the tube E, 
wall to the circular opening at the end CL, 
of the tube; B 
dimensionless heat-transfer coefficient, &’ 
(WG3W”; P9 
heat-transfer coefficient which includes CT, 
both convection and radiation; 

mean gas velocity; 
axial length co-ordinate measured 
from tube entrance; 
dimensionless co-ordinate, X/D; 
emissivity of surface ; 
viscosity of gas; 
dummy integration variable ; 
dimensionless variable, E,fD; 
density of gas; 
Stefan-Boltzmann constant. 

convective heat-transfer coefficient; Subscripts 
geometric configuration factor be- e, exit end of tube; 
tween elements on inside of tube wall; g, gas; 
thermal conductivity of gas; . 5 
length of tube; 

inlet end of tube (except in symbol qi); 
f.3 reservoir; 

dimensionless length, L/D; w, inside surface ‘of tube wall. 
Nusselt number, hDJk; 
Prandtl number, c&k; ~~~~U&~~N 

heat added per unit area at tube wall; 
total incoming radiation per unit area 

HEAT transfer by forced convection to a gas 

to a surface element; 
flowing in a tube has received detailed study in 
the literature, but little consideration has been 

total outgoing radiation per unit area given to the added effects caused when thermal 
from a surface element; 
Reynolds number, u,,$p/p; 

radiation is also present. The radiation exchanges 

Stanton number, 
become especially important at the high tem- 

4 ~~J~~~r = ~h~~~~c~; 
perature levels encountered in advanced types 
of power-plots such as the nuclear rocket. In 

temperature; 
dimensionless temperature, ~u/q)1’4~; 

some instances, the radiation will impose an 
additional heat load on a part which is to be kept 
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cool, and hence this exchange must be estimated 
when the cooling requirements are computed. 
In other cases, the radiation will help reduce the 
temperature of a region operating at a high 
temperature. 

This paper is concerned with the energy 
exchanges that occur inside a tube when heat is 
being transferred by radiant interchange be- 
tween elements on the tube wall and by forced 
convection to a gas which does not absorb or 
emit radiation. The tube is heated by an ex- 
ternally applied uniform heat flux imposed at 
the wall. This heat flux would usually be caused 
by a uniform heat generation in the wall, such as 
in the channel of a nuclear reactor or in a forced- 
convection experiment with an electrically 
heated tube. The gas is heated only by convec- 
tion from the wall, and the amount of this heat- 
ing depends on the difference between the local 
wall and bulk gas temperatures and on the 
convective heat-transfer coefficient. The thermal 
radiation between elements of the wall inside 
the tube alters the wall temperature distribution 
from the pure convection case and this in turn 
influences the gas temperature variation along 
the tube length. 

ture distribution was placed in finite-difference 
form. This gave a set of nonlinear algebraic 
equations which were solved by using the 
Newton-Raphson method. The second method 
was used principally as a check on the first, and 
good agreement was obtained. In [4] the special 
case was considered where the convection is 
negligible compared with the radiation, and wall 
temperature distributions were found for both 
black and diffuse gray radiation. 

The present paper provides the additional 
analysis necessary to extend [3] to include 
diffuse gray radiation. The resulting equations 
reduce to those in [3] as a special case when 
E = 1. The gray-wall assumption is made, which 
states that the emissivity and absorptivity are 
independent of wavelength and are equal. They 
still could be a function of wall temperature, but 
it is assumed that they are constant over the 
wall temperature range for any numerical case (in 
some references the independence with tempera- 
ture is also included in the gray assumption). 
Both of the methods given in [3] can be used to 
solve the gray-wall equations. However, the 
direct numerical solution of the integral equation 
became quite involved and hence using a 
separable kernel was the most convenient of the 
two methods. The approximations made in 
the separable-kernel method are confined to the 
radiation terms. For gray walls, the radiation 
exchanges would be expected to contribute a 
smaller fraction of the total heat transfer than 
for black walls, so the error in the approxima- 
tions is decreased when the emissivity is less 
than 1. Hence the separable-kernel method 
should be satisfactory for the gray-wall problem, 
since in [3] it was shown to give reasonable 
results for the black-wall case. 

Some previous work on combined convection 
and radiation has been given [l-3]. The latter 
two references deal with flow in a tube such as 
treated in the present paper, but are limited to 
the condition that the radiating surface is black 
(E = 1). In [2], one numerical case was obtained 
for a short tube by division of the tube length 
into several isothermal sections, after which a 
heat balance on each of these regions was taken. 
This resulted in a set of nonlinear algebraic 
equations which were solved for the wall tem- 
perature in each isothermal zone. In [3] the 
problem was examined in greater detail and 
numerical solutions were carried out to show ANALYSIS 

the effect of each of the independent parameters. 
Two methods of solution were employed. In 
one, a separable kernel was used to approximate 
the geometrical configuration factor for radia- 
tion between elements of the internal tube 
surface. With this approximation, the integral 
equation could be transformed into a second- 
order ordinary differential equation which was 
integrated numerically. In the second method of _ _ 
solution, the integral equation for the tempera- ~_ L I I, ” 

The system to be analyzed is shown schema- 
tically in Fig. 1. A transparent gas at a specified 
inlet temperature T,, i flows into the tube and is 
heated to an average exit temperature T,, e. A 
uniform heat flux q is supplied to the tube wall 
by external means (e.g. electrical heating, nuclear 
fission), and the outside surface of the tube is 
assumed insulated. Each end of the tube is 
exposed to an outside environment or reservoir 
which is at a snecified temnerature T_ i at the 
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inlet end of the tube and at T,, d at the exit end. 
The inside of the tube wall is a diffuse gray 
surface with an emissivity E. It is assumed that 
there is no axial conduction in the tube wall or 
in the gas and that the convective heat-transfer 
coefhcient h is a constant throu~out the tube. 

OUTSIDE INSULATED 
T,(X)-\ \ 

FIG. 1. Circular tube geometry. 

Energy balance 
The energy balance including radiation ex- 

changes will be derived by use of Poljak’s net- 
radiation method described in [5]. According 
to this method, we let q. be the rate of outgoing 
radiation from the surface, which is composed 
of the direct emission plus the reflection of 
incoming radiation. The rate of incoming 
radiation to an element on the surface is desig- 
nated as qi. Then for an element on the tube 
surface the energy balance can be formed as 

q + qi = 40 + W’,(X) - T&01. (1) 
The terms on the left are the externally imposed 
heat input q and the incoming radiation. On the 
right there is the outgoing radiation and the heat 
leaving by convection from the wall to the gas. 
T, - T, is the local difference between the wall 
temperature and bulk gas temperature. The 
imposed heat flux q and the convective heat- 
transfer coefficient h are assumed independent 
of axial position, although variations along the 
tube could be accounted for in the analysis. The 
radiation terms are now considered in detail. 

The radiative heat flux q. leaving a surface 
element is composed of direct emission, EUT$ 
and of reflected radiation which is (1 - C) times 
the incoming radiation : 

q. = EUT; + (1 - E)qi. C-9 

The incoming radiative heat flux qi is composed 
of two types of terms, the radiation coming from 
the reservoirs at the ends of the tube and the 
radiation arriving as a result of the outgoing 

radiation from the other elements on the internal 
tube surface. These quantities can be written as 

+ f’,qo(tW(S - 4 dt. (3) 

The function F(X) is the geometric configuration 
factor for radiation from an element on the tube 
wall at location x to the circular opening at the 
inlet end of the tube. This factor is given by [2] 

It has been assumed that the reservoirs can be 
represented by black circular disks at the end 
openings of the tube. This would be a good 
approximation in many instances when the 
reservoirs are chambers with dimensions larger 
than the tube diameter, which causes the reser- 
voirs to behave like black-body cavities when 
viewed through the end openings. The function 
K(z) is the configuration factor between two 
rings on the inside surface of the tube a distance 
I apart and is given by [2] 

Equation (3) is substituted 
to eliminate qi with the result 

z 2 0. (5) 

into equation (1) 

h[Twtx) - T&41 + qo = q + UT:, W9 

+ S:e Ftl - .4 + E sotO:)lir(x - 8 dS 

+ s:, qotWW - 4 dt. (6) 

This equation has three unknowns qo, T, and T,, 
so two additional relations are needed. To 
relate q. and T,, equations (1) and (2) are 
combined to eliminate qi with the result 

q. = 0 - 4 Y IMTw - T,) - q] + ~7.;. (7) 

To relate T, and T,, an additional heat balance 
is written for the flowing gas. Since the gas is 
transparent to radiation, the only heat trans- 
ferred to it is by convection from the wall. For 
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a cylindrical volume element of length dX and 
diameter D, 

7fD2 
unL p4- pc, 2 dX. 

The mean fluid velocity u, is assumed constant 
so that kinetic energy changes of the gas are 
neglected. These two quantities are equated and 
the result is rearranged into the form 

The integrals in equation (10) are eliminated by 
subtracting four times equation (6), which gives 

dT, 
dx = S P-W(X) - ~&>I (8) 

where S is the Stanton number, 4h/u,pc,, and 
x = X/D. 

Equations (6-8) form a set of three simultane- 
ous equations for the three unknowns T,, T, 
and qO. Only the first two of these are of physical 
interest, so q,, will be eliminated as the analysis 
proceeds. 

1~ 
‘d2TW d2T, 
,3x2- - dX;m - 4T,, t 

+ m;$ = - 4q + UT;; 
I 

+ UT;@ 
d2F(l - x) 
---~dx2-. - 4F(l- x) 1 . (11) 

The quantity d2q,/dx2 can be eliminated by 
means of the expression obtained by differ- 
entiating equation (7) twice : 

d”qo _ 
Transformation to a differential equation dx2 

The integral equation (6) can be reduced to a 
differential equation by use of an approximate 
separable function for the geometric kernel K. 
The approximation used in [3] and [4] was the 
exponential function 

K(z) Y e-2z z 2 0. (9) 

This gave very good results for short tubes with 
length-diameter ratios less than about 10, as 
shown in [3]. For longer tubes, it was pointed 
out in [6] that this approximation becomes less 
accurate and K(z) is better approximated by a 
sum of exponential terms. However, in the 
present problem, for long tubes convection 
generally becomes more dominating, as shown 
in Fig. 12 (see p. 658), and hence the approxi- 
mation for the radiation exchange does not have 
to be as precise. For this reason the approxima- 
tion in equation (9) appears adequate for the 
combined radiation and convection cases treated 
here. 

To eliminate the second derivative of the gas 
temperature, equation (8) is differentiated and 
then equation (8) is substituted in the result to 
remove dT,/dx. This gives 

The result of substituting equations (12) and (13) 
into equation (11) is the following differential 
equation which has been placed in dimension- 
less form: 

Equation (9) is substituted into equation (6) 
and the resulting equation is differentiated twice 
to give 

+ 407-3 d”? + 12 
” dx2 

d2T, 
-- = S 

dx2 (I 
‘$; - S(TtO - Tg) 

I 
. (13) 

+ t4, d”F(x) 
1. e 

[ 
~ 

dx2 
- 4F(x) 1 

+ t4 d2W - x1 r. e ---- ~ - 4F(l - x) 
dx2 1 . (14) 
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Equations (14) and (8) are two simultaneous 
equations for the wall and gas temperatures 
along the tube. They could be solved by num- 
erical integration in their present form, but 
before this is done an additional simplification 
is made. It was shown in [3] and [4] that the 
configuration factor F could be approximated 
with good accuracy by the exponential function 

F@) N 7; (15) 

With this function, the quantity [d2F/dx2 - 4F] 
is equal to zero and hence the reservoir tempera- 
tures t,, i and t,, e do not appear in the differential 
equation (14). The reservoir temperatures will 
enter the solution through the boundary condi- 
tions. To summarize: the final differential equa- 
tions to be solved simultaneously are 

dt, di = S(t, - t!J. (16b) 

Boundary conditions 
Equation (16b) is a first-order equation and 

hence requires only one boundary condition. 
The condition is that at the inlet of the tube 
the gas temperature has a specified value t,, i: 

t, = t,, i at x = 0. (17) 

Equation (16a) is a second-order equation 
and requires two boundary conditions. These 
are found by use of the approximations for K 
and F in the integral equation (6) and then 
evaluation of it at x = 0 and x = 1. At x = 0 
this gives : 

wum - ~cml + 4m 

=4+ 
CT;< aT,f,e-2z 

2+ --.2-- 

+ .ff, q,,(8) e-2t d5 (18) 

while at x = I: 

NT&) - T,(01 + q,(l) 

aT4. e-21 mT,fc 

=q+ +-+1 

+ & 1’ q&Y e2( dE. (19) 
0 

The outgoing radiation go is eliminated by means 
of equation (7), and part of the integration can 
be carried out analytically. This substitution 
was carried out only for the boundary condition 
at x = I, because the condition at x 2 0 is 
in a different form as described in the 
paragraph. The final form of equation (19) 
go eliminated and the result rearranged 
dimensionless form is 

(1 - 4 
-2E (1 + e-2z) + 1 + t$ yg 

=;[t.,,- t.(Z)] + t:(z) -$f 

used 
next 
with 
into 

z (1-c) -J [ ---H(tw - tg) + t”, e-z(r-z) dx. (19a) 
0 1 

In order to begin a numerical forward inte- 
gration of equations (16a) and (16b) it is 
necessary to know at x = 0 the values of the 
wall and gas temperatures and the first 
derivative of the wall temperature. The inlet gas 
temperature is specified for any particular 
problem, but the wall temperature at x = 0 is 
unknown and will have to be found by trial and 
error, as discussed later. For determination of 
the initial wall temperature derivative, equa- 
tion (6) with the approximate K and F from (9) 
and (15) is differentiated once and evaluated at 
x = 0. 

= - uTzf, + ~Tz,e-~~ + 2 Ji go(f) e-25 d[. 

The integral on the right is eliminated by means 
of the boundary condition at x = 0, equation 
(18) ; then go(O) is eliminated by means of 
equation (7), dq,/dx at x = 0 by the first deriva- 
tive of equation (7), and dT,/dx by equation (8). 



644 R. SIEGEL and M. PERLMUTTER 

The resulting equation is solved for the initial 
wall temperature derivative which has the final 
dimensionless form 

1 
= __-- ~~~ 

H + 4Et:.(o) !I 
H(S + 2) [tu,(0) - t,, $1 

+ 2<?;,(o) - 2 - 2Et; J. (20) 

Since the boundary condition at x = 0, equation 
(18), has been used to obtain this relation, this 
boundary condition will always be fulfilled at 
the start of the numerical integration. Hence 
the only boundary condition which remains to 
be satisfied is equation (19a), and this will be 
fulfilled when the proper value for tw(0) is found. 

Numerical solution 
To carry out a solution it is first necessary to 

choose a value for each of the seven independent 
parameters that are involved. These are H, S, 

t,., ir t,, e, t,, i9 I and E. The simultaneous equa- 
tions (16) for the wall and gas temperatures were 
programmed for solution on a digital computer 
with a forward integration technique. This has 
been described in [3] where the increment sizes 
required and the sensitivity of the solution are 
discussed for a similar type of equation. The 
same computational procedure was used in the 
present paper and it is not worthwhile to repeat 
the details here. After assigning values to the 
parameters, the next step is to estimate a value 
for the wall temperature at the beginning of the 
tube r,,(O). From this value the wall temperature 
derivative at x = 0 can be found from equa- 
tion (20). With these initial values, the forward 
integration of the differential equations can be 
carried out, and the solution is then substituted 
into the boundary condition equation (19a). 
If (19a) is not satisfied, then a new trial for 
t,,(O) is made and this process is continued until 
the desired solution is found. 

Ocer-all heat balance 
An additional check of each numerical solu- 

tion was made by making sure that it always 
satisfied an over-all heat balance. The individual 
terms in the heat balance also provide some 
useful information that will be tabulated later. 
The balance was derived from the following 
terms: The heat imposed at the tube wall is 

qvDL. The heat carried away by the gas is 
PwJ~WW~, e - T,. <). The heat radiated in 
from the reservoirs at the ends of the tube is 

and the heat radiated from the tube surface out 
through the ends of the tube is 

The heat balance is formed from these terms and, 
after substitution of the approximate exponential 
functions for K and F, the integrals of the F 
terms are carried out analytically. The heat 
balance is then placed in the dimensionless form 

_ (1 - y2’) p +Ht 
4 r, e s Q’” 

(1 l% t -- 2 
J .- [+c + e-z(l-x) d-y. 

oq I 

The outgoing radiation q. is eliminated by 
substitution of equation (7), and two of the 
terms under the integral can then be integrated 
analytically. After rearrangement, the heat 
balance takes the final form 

+’ ’ 
S[ 

(‘-‘)H(t -t)+t” 
2, E u’ R w 

[e--2Z + e-2(z-x)] dx-. (21) 

INDEPENDENT PARAMETERS 

Before the results of the analysis are discussed 
it is desirable to review briefly the seven inde- 
pendent parameters that must be chosen for 
each numerical case. 
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(1) E is the emissivity of the wall which is 
assumed to be a diffuse gray surface. The 
variation of emissivity with temperature is 
assumed negligible over the range of tempera- 
tures encountered in each solution. Examples 
are given for E ranging from 1.0 for a black wall 
to 0.01 for a highly reflecting wall. 

(2) 1 is the tube length expressed in terms of 
tube diameters. This geometry factor has an 
impo~ant effect on the wall temperature distri- 
butions as it determines how well the internal 
surface of the tube can exchange radiation 
directly with the external reservoirs. 

(3) H is the parameter (h/q) (q/a)l/*. When q 
has a fixed value, H is directly proportional to 
the convective heat-transfer coefficient. 

(4) The specified temperature of the gas 
entering the tube is expressed in terms of the 
parameter t,, i = T,, i(c/q)1’4. When t,, i is 
increased, the temperature level in the system is 
raised and this increases the radiation exchanges. 

(5) The inlet and exit reservoirs are expres- 
sed in terms of the dimensionless groups 
t r, i = T, i(o/q)1/4 and t,, g = T,., ,(u/q)“l”. 
When q is a specified constant, the dimensionless 
groups are directly proportional to the reservoir 
temperatures. 

(6) The parameter S is the Stanton number 
4NuJRePr = 4hlu,pc,. For a fixed q and h, an 
increase in S, caused for example by a decreased 
flow rate, increases the axial gas temperature 
gradient along the tube. 

RADIATION CORRECTION FACTOR FOR 
EAT-T~S~R COERCES 

In addition to the foregoing parameters there 
is one more quantity which should be discussed 
before the specific results of the analysis are 
presented. This deals with the interpretation of 
forced-convection experiments in electrically 
heated tubes to determine convective heat- 
transfer coefficients for high-temperature condi- 
ditions. To determine the local heat-transfer 
coefficient, meas~ements would be made of 
local wall and gas temperatures in the tube. 
Then with q known, the experimental heat- 
transfer coefficient would be hexp = q/(Tw - T,). 
This is not a convective coefficient because it is 
the result of both radiation and convection 
processes within the tube. There are some 

additional effects such as the axial heat con- 
duction in the tube wall which would contribute 
to hexp, but since these have not been included 
in the present analysis they cannot be discussed 
here. To obtain h for convection alone it is 
necessary to correct hexp to account for the 
radiation exchanges, and a theoretical radiation 
correction factor can be derived from the 
present analysis. This is given as the ratio 
hlh~~~, which can be multiplied by the ex- 
perimental coefficient for combined radiation 
and convection to yield the coefficient for 
convection alone. The ratio is equal to 
h/hexp = (h/q) (T, - T,), or in dimensionless 
form H/Hexrp = H(tw - tJ. This was evaluated 
from the wall and gas temperature distributions 
found in the analysis, and results will be given 
in the sections that follow. 

LIMITING CASES OF PURE CONVECTION 
AND RADIATION AM) THJZIR SIGNIFICANCE 

There are two limiting cases which are useful 
for comparison with the present results. One is 
the result for pure convection which is achieved 
when the radiation effects are very small. This 
limit would be expected as the temperature level 
of the system diminishes, as the ernissivity of 
the surface decreases toward zero, or as the 
convective heat-transfer coefficient becomes 
very large. For pure convection with fully 
developed flow and heat transfer in a tube where 
there is a uniform heat addition at the wall, both 
the gas and wall temperatures rise linearly along 
the tube length. The gas temperature variation 
can be found from a heat balance on the flowing 
gas, which states that 

qrf> dX = u, $2 pc, ‘2 dX. 

This is integrated to determine T,, and the result 
can be placed in the dimensionless form 

t,= ;x f t,, g. (22) 

The local wall temperature differs from the local 
gas temperature by a constant which is found 
from the convective heat-transfer coefficient, 

q = h(Tw - T,) or T, = 5 + T,. 
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After substitution of equation (22) for the gas 
temperature, the wall temperature can be placed 
in the dimensionless form, 

t,, = H” x + -; + t,, i. (23) 

The limit of pure radiation is reached when 
convection becomes small compared with the 
net radiation exchange. This will occur, for 
example, when the convective heat-transfer 
coefficient is small or when the temperature 
level in the system is high so that the radiation 
exchanges are large. It was shown in [4] that, 
by use of the net radiation method, the solution 
for a diffuse gray wall could be easily found 
when the result for a black wall was known. 
This led to the following solution for the wall 
temperature obtained by using the approximate 
separable kernel method : 

I 1 
t, = ; + t;, c + 1+ 2(x1 - x2> 

+ (t;, i - t;, ,) @&dj 1’4. (24) 

Because of the approximations used in [4], this 
relationship becomes less accurate for long 
tubes (L > lo), but still should indicate the 
general trend of the pure radiation temperature 
levels. 

These limiting cases can be used to obtain 
some insight into the nature of some of the 
solutions that follow. This interpretation applies 
when both reservoir temperatures are lower than 
the wall temperatures so that there is no net 
radiation to the wall from the environments. In 
this instance, all of the heat that leaves the tube 
by convection or radiation arises from the y 
imposed at the wall. The wall temperatures re- 
quired to dissipate the heat by pure convection 
or by pure radiation are obtained from equations 
(23) and (24). The limiting case that gives the 
lowest temperatures corresponds to the mech- 
anism by which the heat can be transferred from 
the tube most efficiently. Since heat can be 
transferred by both mechanisms more effectively 
than by either process alone, the wall-temperature 
solution will fall below the envelope formed by 
the pure-convection and pure-radiation curves. 
If one limiting curve falls considerably below the 

other, the exchange mechanism for the lower 
curve is much more efficient than the other 
process and it will dominate the heat transfer. 
In this instance the wall temperatures will be 
slightly below the lower curve. However if the 
limiting curves fall close together this means 
that both exchange mechanisms are of com- 
parable efficiency and the wall temperatures for 
combined radiation and convection will fall 
considerably below both limiting curves. This 
discussion will be illustrated in the sections that 
follow. It can also be used to interpret how the 
results would change if the convective heat- 
transfer coefficient were a function of X, such 
as in a thermal-entrance region. There, the 
convective-wall-temperature curve would be 
lower owing to higher h-values. The wall 
temperatures for combined radiation and con- 
vection would be expected to fall below this 
convection curve. 

RESULTS FOR SHORT TUBES (L/D = 5) 

Solutions for various values of the parameters 
were obtained for a short tube having a length- 
diameter ratio of 5. The values of the parameters 
were chosen to show the behavior of the system 
over a physically realistic range of variables. 
For short tubes, the entire inside surface of the 
tube can readily exchange heat by radiation 
directly with the external environment, and 
hence the radiation effects would be expected 
to be more important for the short than for the 
long tubes. For most of the cases that follow, 
the inlet reservoir temperature was set equal to 
the inlet gas temperature (t?, i = t,, ;), and the 
exit reservoir temperature was set equal to the 
exit gas temperature (tr, e = t,, e). For cases 
where this was not done it will be specifically 
noted. 

Effect of emissivity 
The effect of wall emissivity on the wall 

temperature distribution is shown in Fig. 2(a) 
for typical fixed values of the other parameters. 
When the wall emissivity is decreased, the 
radiant-heat transfer becomes less efficient and 
hence the wall temperatures for pure radiation 
increase. For pure convection, however, the 
wall temperatures remain the same, since this 
solution is independent of emissivity. Then, as 
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PURE RADIATION PRESENT SOLUTIONS 
--- 

3-4 r Q c 

PURE CONVECTION7 

2.7 

t 

2.3 

I-0 c /’ 

O-8 PURE CONVECTION7 ,,’ ’ 

FIG. 2(a). Effect of wall emissivity on temperature distributions in a short tube. 
I = 5, H = 0.8, S = 0.01, t,, j = t,, i = 1.5, I,, e = t,, C. 

discussed in the section on limiting cases, the 
computed wall temperatures should fall closer 
to the pure convection curve as the emissivity is 
decreased. The effect of emissivity on the pure- 
radiation curves was found to be small for values 
of E between 1-O and 0.5, and consequently in 
this range E has little influence on the solution. 
Table 1 gives the amounts of heat being trans- 
ferred by convection to the gas and by radiation 

to the reservoirs. The radiation loss to the 
reservoirs causes the wall temperatures to drop 
off near the ends of the tube. As expected, when 
E decreases a greater portion of the heat is 
transferred to the gas. This is also shown in the 
lower part of Fig. 2(a) where the gas temperature 
variation approaches the pure convection line 
as E becomes small. 

In Fig. 2(b), the solutions in Fig. 2(a) are 
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PURE CONVECTION7 

IO? ____----___1--_----_-- 
PRESENT 

SOLUTIONS 
c 

0.8 - 
O,Ol 

FIG. 2(b). Effect of wall emissivity on ratio of heat- 
transfer coefficients for pure convection and combined 
convection and radiation for a short tube. I = 5, H = 0.8, 

S=o*ol,t,,i=t,,,=1~5,t,,,=t,,,. 

plotted in terms of the radiation correction factor 
H/HeXp, which was discussed previously. Even 
for an emissivity as low as 0.01 the correction 
factor is quite large and the effect of radiation 
cannot be ignored when compared to the con- 
vection effects. 

In Fig. 3, the results for different values of 
Stanton number S are plotted for E =- 1 and 
0.01. For the same convected heat transfer, an 
increase in the Stanton number tends to increase 
the axial temperature gradient along the tube. 
The present results show that this parameter 
does not have a significant effect over a physi- 
cally realistic range of values. Since the changes 
with S are not large, the influence of E can be 
shown for this entire range of S by choice of a 
typical S-value and giving results for several E. 
This is given in Fig. 2(a) where S = O*Ot is 
chosen. This is a reasonable value as shown by 

Table 1. Fractional heat losses by convection and radiation for a short tube, I = 5 

m-_-.z 

---~- 

EA‘ect of •: 
(H = OS, s = 0.01, 
t ,, i = t,, i = 15) 
---- 

Effect of S 
(H = 0.8, 
t ,, i = t,, I = 1.5) 

-_- --.-- 

Convection Radiation to Radiation to 
E t I. c out/ inlet reservoir/ outlet reservoir/ 

heat in heat in heat in 
---.- 

0.01 1.546 = t,, 6 0.734 0,136 cl, 130 
0.1 1528 = I,, e 0440 0.282 0.278 
1 1522 = t,. e 0.345 0.329 0.326 

____- 
s = 0.005 0.01 1.523 = ty, e 0,736 0,133 0.131 

0.005 1 1.511 = tg, @ 0.346 0.328 0.326 
0,02 0.01 1,591 = tg, J 0.728 0.144 0.128 
0.02 1 1.543 = tg, c 0.341 0,333 0,326 

Effect of H H = 0.2 0.01 1575 = t,, e 0.300 0.357 0.343 
(S = 0.01, 0.2 1 I.527 = t,, e 0.108 0449 0.443 
2,. f = I,. i = 1.5) 1.5 0.01 1.529 = f,, c 0.873 0.065 0.062 

1.5 1 1.517 = t,. e 0.513 0,245 0.242 

Effect oft,, ( t 8, i = 0.5 0.01 0,558 = I,, e 0.928 0,035 0.037 
(H = 0.8, S = 0.01, 0.5 1 0.544 = t,, e 0.708 0.144 0.148 
t i = tl. i) I, 3.0 @Ol 3.025 = t,, e 0394 0.323 0.283 

3.0 1 3.006 = t,, P 0.090 0459 0.45 1 

Effect oft,. S 0.01 0 0.719 0‘095 0.186 
(H = 0.8, S = @Ol, 1 0 0,287 0.306 0407 
tr, f = tn. i = 1.5) 0.01 5 1.782 4.861 - 5643 

1 5 1.993 4.767 - 5.760 

-- -z .-- -_-..z 



CONVECTIVE AND RADIANT HEAT TRANSFER 649 

PURE PURE PRESENT 
CONVECTION RADIATION SOLUTIONS 

------ --- 
c=oolc=I~o 

I-0 

0.8 PURE CONVECTION7,/‘- 
.Y 

FIG. 3. Effect of Stanton number S on temperature distributions in a short tube. 
1 = 5, H = 0.8, t,, i = t,, i = 1.5, tr, e = t,, e. 

use of the formula for fully developed turbulent 
pipe flow, Nu = 0.023 Re”.s Pr0.4. The value 
of S for Re = 100 000 and Pr = 0.7 is about 
0.011. 

Eflect of heat-transfer coeficient 
The results for different values of H are shown 

in Fig. 4 for emissivities of 1 and 0.01. If q is 
constant, a variation of H corresponds to a 
proportional variation in the heat-transfer 

coefficient h. Since the parameter S, which also 
contains h, is being kept constant in Fig. 4, this 
implies a similar proportional variation in 
pu,cD to keep S constant while H is varied. It 
was shown by Fig. 3 that a variation of pu,c, 
as contained in S does not have a large effect 
on the results for h held constant, so that Fig. 4 
primarily indicates the effect of different h- 
values. 

For a small H, the convection is poor and the 
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PURE PURE PRESENT 
CONVECTION RADIATION SOLUTIONS 

. ..-_......- -I- 
6 :@Ol B = I*0 

6.8 E: H H 
__.--- --- 

0.2 ___.+-------- 

t, = -$ 0 
t/4 

r, 2-8 k 0.8 ____-_-----c __--_---__- 

I-- / 
o-8 PURE , ---, 

FIG. 4. Effect of dimensionless convective heat-~ra~fer coefkient H on temperature distribution in a:short tube. 
I = 5, s = 001, t,, $ =: fg, i = 15, tr, e = to, e. 

pure~convection solution gives high wall tem- 
peratures. For N = 0.2 the pure convection 
result is higher than the pure radiation curve for 
E = 0.01, so even for this low emissivity the 
heat can leave the tube more e~~iently by 
radiation. Hence the solution lies below the 
pure radiation curve. For N = l-5, however, 
the pure-convection curve gives much lower 
temperatures than the pure radiation solution for 
r = O-01, and the solution lies slightly below the 

convection results. For N = 04, the details 
on. the effect of emissivity are given in 
Fig. 2, 

Figure 5 shows the effect of varying the inlet 
gas temperature in a duct of length 5. As the 
temperature is raised, the radiation exchanges 
become more important and the solutions move 
toward the pure-radiation curves. The effect of 
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PURE PURE PRESENT 
CONVECTION RADIATION SOLUTIONS 

------ --- - 
rzoa 6:I.o t -001 c= I.0 

J-@IC.?_ 
,__o_?_____________-g___ 

O-8 

tp-f&i 

(f5’,d’,~)PURE “0:; 
CONVECTION 

0.2 

PURE CONVECT10 

FIG. 5. Effect of inlet-gas temperature t g, s on temperature distributions in a short tube. 
I = 5, H = 0.8, S = 0.01, t,, i = t,, i, t,, d = t,, e. 

wall emissivity is shown in detail in Fig. 2 for 
r Cl, i equal to l-5. 

Efect of exit reservoir temperature 
For the preceding cases the exit reservoir 

temperature was set equal to the exit gas 
temperature. In Fig. 6 the exit reservoir tem- 
perature was set at different values independent 
of the exit gas temperature. The results demon- 

strate the large influence that the exit reservoir 
has on the tube-wall temperature distribution. 
Table 1 shows that in some cases the heat 
radiated into the tube is as large as the heat 
flux imposed at the wall. If the inlet reservoir 
were heated it would be expected to produce 
the same type of effect near the tube entrance. 
Hence in this instance, for a rocket engine where 
the nozzle walls can see the combustion chamber, 
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55 r PURE RADIATION PRESENT SOLUTION 
-_- 

c = 0.01 E = I.0 s=o-01 < = I.0 

----_ - 
PURE CONVECTtON 

tg - tg, i 

pk. -6,;) PURE 
CONVECTION 

PURE CONVECTtON 

t 

X/D 

FIG. 6. Effect of exit-reservoir temperature t,, c on temperature distributions in a short tube. 
I = 5, H = 0.8, s = 0.01, t,, f = t,, i = 1.5. 

this indicates that the heat load on the wall may 
be quite large because of the radiant inter- 
change. 

RESULTS FOR A LONG TUBE (L/D = 50) 

Results will now be given for a long tube with 
a length-diameter ratio of 50. In the central 
portion of the tube the wall temperatures fall 
close to the pure-convection solution. This 

shows that the net radiation exchange is very 
small even for E = 1, and hence in this region 
heat is transferred mainly by convection. Near 
the ends of the tube the wall can readily exchange 
heat with the reservoirs, and hence in these 
regions the net radiation exchange can be quite 
large. This causes the wall temperature near 
the ends to be close to the pure-radiation 
solution. 
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3.2 PURE CONVECTIONL,/ 
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FIG. 7(b). Effect of wall emissivity on ratio of heat-transfer 
FIG. 7(a). Effect of wall emissivity c on the temperature coefficients for pure convection and combined convection 
distributions in a long tube. I = 50, H = 0.8, S = 0.01, and radiation for a long tube. I = 50, H = 0.8, S = 0.01, 

t T, i = t,, i = 1.5, t,. e = t,, C. t r. i = tn. i = 1.5, t7, 0 = tg, C. 

Table 2. Fractional heat losses by convection and radiation for a long tube, I = 50 

___--- 
Effect of l 
(H = 0.8, S = 0.01, 
I,. i = t,. 1 = 1.5) 
-~--- 
Effect of S 
(H = 0.8, 
I,, i = t,, j = 1.5) 

Convection Radiation to Radiation to 
E t r, d out/ inlet reservoir/ outlet reservoir/ 

heat in heat in heat in 

0.01 2.066 = tg, e 0906 0.039 0.055 
0.1 2.047 = t,, s 0.875 0.053 0.072 
1 2.043 = t,, e 0.869 0.056 0.075 

S = 0.01 0.01 2.066 = t,, 6 0906 0.039 0.055 
0.01 1 2.043 = t,, e 0.869 0.056 0.075 
0.02 0.01 2.061 = t,. e 0.881 0.044 0.075 
0.02 1 2.556 = t,, e 0.845 0.059 0.096 

Effect of H H = 0.2 0.01 2.743 = t,, e 0.497 0.240 0.263 
(S = 0.01, 0.2 1 2.691 = t,, e 0.476 0.251 0,273 
t i = t,, ; = 7, 1.5) 0.8 0.01 2.066 = t,, c 0.906 0.039 0.055 

0.8 1 2.043 = t,, e 0.869 0.056 0.075 

Effect oft,, i t *, i = 1.5 0.01 2.066 = t,, 8 0.906 0.039 0.055 
(H = 0.8, S = 0.01, 1.5 1 2.043 = t,, e 0.869 0.056 0.075 
t,, * = I,, i 1 3 0.01 3.467 = t,. c 0.748 0.122 0.130 

3 1 3444 = t,, c 0.705 0.141 0.154 
----_ 

Effect oft,, c 0.01 0 0.895 0.039 0.066 
(H = 0.8, S = 0.01, 1 0 0.851 0.056 0.093 
t i = t,, i = 1.5) I, 0.01 4.5 1.108 0.040 - 0.148 

1 4.5 1.116 0.056 - 0.172 
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Eflect of emissivity 
The effect of wall emissivity is shown in 

Fig. 7(a). The emissivity has an effect only near 
the inlet and outlet reservoirs. As emissivity is 
decreased, heat cannot be radiated as efficiently 
and the wall temperatures tend toward the pure- 
convection solution. In the central part of the 
tube, heat is transferred mostly by convection. 
The small amount which is transferred by 
radiation is independent of the emissivity. This 
is because the radiation for a small emissivity is 

reflected and re-reflected from the walls many 
times before it can escape to the ends of the tube. 
The total effect of all the reflections causes the 
radiation exchange to behave as if the walls 
were black. Table 2 shows the amounts of heat 
being radiated or convected from the tube. For 
long tubes most of the heat is transferred by 
convection. 

In Fig. 7(b) the radiation correction factor is 
plotted for the same cases given in Fig. 7(a). In 
the central region the correction factor is close 

PURE PURE PRESENT 
CONVECTION RADIATION SOLUTIONS 

c=~Olc=I.O 
S c s s 

3.6 

3.2 

0 

l/4 
fw=% r, 

2.8 

2.4 

I.6 L 

rg -fg,i 0.6 - 

FIG. 8. Effect of Stanton number S on temperature distributions in a long tube. 
1 = 50, H = 0.8, t,, < = t,, i = 1.5, t,, e = t,, L. 
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to unity so that, in an experiment, the convective 
heat-transfer coefficient could be determined 
directly without a significant radiation error. 

E#ect of Stanton number 
The effect of Stanton number S is shown in 

Fig. 8 for emissivities of 0.01 and 1. The tem- 
peratures obtained for pure radiation are quite 
high since it is difficult for the heat to dissipate 
from the central portion of the tube to the end 
reservoirs. As a result, most of the heat leaves 
by convection which is the more efficient heat- 

transfer mechanism and the solutions are con- 
vection dominated. Since the pure-convection 
results are quite dependent on the parameter. 
S, the same dependence is present in the solu- 
tions. The gas temperature curves in the lower 
part of the figure are close to the pure convection 
line owing to the small radiation losses. 

Efect of convective heat-transfer coeficient 
Figure. 9 shows the effect of the dimensionless 

heat-transfer coefficient H on the temperature 
distribution. In the central part of the tube, for 

PURE PURE PRESENT 
,. CONVECTION RADIATION SOLUTIONS 

------ --- 
E =O.Ol c=I.O 

H c H H 

/’ 
/’ 

/’ 

/’ 
/’ 

/’ 
,/ 

02/’ 

/’ 
*’ 

0.01 

FIG. 9. Effect of dimensionless convective heat-transfer coefficient H, on temperature distributions in a long tube. 
1= 50, s = 0.01, tr, i = t,. i = 1.5, t,, e = t,, C. 
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large values of H the wall temperatures for pure 
convection are much lower than for pure radia- 
tion. As a result, practically all the heat is 
transferred by convection in this region, giving 
wall temperatures only slightly below the pure- 
convection curve. The ends of the tube, how- 
ever, can see the colder environment quite well, 
and in this region heat is transferred by the 
combined process of convection and radiation, 
giving temperatures below the results for either 
process alone. For a small H of 0.2 the wall 

temperature distribution for pure convection is 
higher than the pure-radiation curve; hence the 
heat can leave more efficiently by radiation 
which gives a solution that is strongly radiation 
dominated. 

Effect of inlet gas temperature 
Temperature distributions for a tube of length 

L/D = 50 and for various inlet gas temperatures 
are given in Fig. 10. As the temperature level is 
raised the radiation effects become more 

PURE PURE PRESENT 
CONVECTION RADIATION SOLUTIONS 

------ --- 
l =o.ol 6:l.O 6 -001 e = I.0 

I.0 
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tg -tg, i 0.6 

PURE 
CONVECTIONo4 
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PURE CONVECTION 

IO 20 30 40 50 
x/D 

FIG. 10. Effect of inlet gas temperature t,, t on temperature distributions in a long tube. 
I = 50, H = 0.8, S = 0.01, tv, i = t,, <, t,, c = t,, e. 
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important and the wall temperature distribution 
has a slightly greater deviation from the results 
for pure convection. When the emissivity is 
decreased, the direct radiation losses to the 
reservoirs are smalller and the wall temperatures 
near the ends of the tube are not as low as they 
were for E = 1. 

Eflect of exit reservoir temperature 
For each curve in Fig. 11, the exit reservoir 

has been maintained at a fixed temperature 
rather than being set equal to the exit gas 
temperature. When the exit reservoir is at a high 
temperature, heat is radiated into the tube from 
the reservoir which elevates the tube wall 
temperatures near the exit end. When the 
emissivity is decreased, the radiation exchanges 
are reduced and the values move toward the pure 
convection curve. Since, for L/D = 50, the exit 
of the tube is far from the inlet, the temperature 

PURE RADIATION PRESENT SOLUTION 
--- 

l ZD.0, C-I.0 E=0.01 c: I.0 

6.5 
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NOTE CHANGE OF SCALE 
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RE CONVECTI 
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(b-d+“,, 0e8 

E CONVECTION 
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FIG. 11. Effect of exit reservoir temperature I ,, 6 on temperature distributions in a long tube. 
I = 50, H = 0.8, S = 0.01, t,. i = t,, i = 1.5. 
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of the exit reservoir has no influence on the 
solution near the tube entrance. 

EFFECT OF TUBE LENGTH-DIAMETER 

RATIO 

In the previous sections, temperature distri- 
butions have been given for short and long tubes 
with length-diameter ratios of 5 and 50. Now, 
as shown in Fig. 12, a few solutions are given 
for tubes with LID equal to 10, 20 and 30, so 
that results can be interpolated for tubes with 
other L/D. As discussed previously, convection 
becomes more important as the tube length is 
increased, and hence the curves move toward 
the pure-convection results as L/D becomes 
larger. For a low emissivity the curves are even 
closer to the pure-convection results. This is 
also demonstrated in Table 3 where numerical 
results for several emissivities are given. 

35 PURE CONVECTION 

r ------- 

PRESENT SOLUTION 
c =oo c= I.0 

L/D L/D L/D 
/’ 

,’ 

/’ 

,,+ =($d; 

__-5-- 

FIG. 12. Effect of tube length on wall temperature 
distributions. H = 0.8, S = 0.01, t,, i = t., i = 15, 

t 7. e = t,, e. 

CONCLUDING REMARKS 

The purpose of this report has been principally 
to examine the effect of wall emissivity on com- 
bined radiation and forced convection in a tube. 
The inside of the tube wall was assumed to be a 
diffuse gray surface and the gas flowing through 
the tube is transparent to radiation. The con- 
vective heat-transfer coefficient between the 
tube wall and the gas was assumed constant. 
In the thermal-entrance region this would not 
be true, since the heat-transfer coefficient would 
decrease with X, from a high value close to the 
tube entrance to the fully developed value 
which, for turbulent gas flow, is reached about 
12 diameters down the tube. The high convection 
coefficients at small X would decrease the wall 
temperatures and hence lessen the radiation 
effects. An indication of the magnitude of this 
effect can be obtained by following the reasoning 
given at the end of the section on limiting cases, 
although a detailed study would be a subject for 
future analysis. 

For long tubes with an L/D of about 50, the 
emissivity had very little effect in the central 
region of the tube. In this region, convection 
accounts for almost all of the heat transfer, and 
radiation is relatively unimportant. The heat 
radiated in the central part of the tube under- 
goes multiple reflections between surface elements 
before escaping to the ends of the tube. This 
tends to produce the same net exchange as black 
radiation from the wall, which further reduces 
the influence of emissivity. Near the inlet and 
exit of a long tube the radiation exchanges are 
reduced when the emissivity is decreased, since 
the direct radiation to the reservoirs at the ends 
of the tube is smaller. For very short tubes this 
direct radiation is important throughout the 
entire tube length, and hence the wall emissivity 
has a substantial influence on the entire tem- 
perature distribution. 

Some consideration was given to the inter- 
pretation of forced-convection experiments with 
electrically heated tubes for measurement of 
convective heat-transfer coefficients at high 
temperatures. When there is a large radiation 
exchange in the tube, the measured heat-transfer 
coefficients must be corrected to yield results for 
convection alone. The magnitude of the radiation 
effect was demonstrated by presentation of some 
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(E 
L 

O*Ol CO5 0.1 1 

Convection out/heat in 10 0764 0,619 0582 0538 
20 0.824 0‘755 0.740 0722 
50 0906 0.881 0.875 0*869 

Radiation to inlet reservoir/heat in 10 0.119 0,391 0209 0,231 
20 0.086 0,119 0.126 0,135 
50 0,039 00.50 0,053 0‘056 

Radiation to outlet reservoir/heat in 10 0.117 O”190 0.209 0.23 1 
20 0.090 0,126 0.134 0,143 
50 0055 0059 O-072 0.075 

Exit-reservoir temperature 10 1595 1577 1.573 1567 
(I,, c = I,. ?) 20 1.706 1~589 1,685 1,681 

50 2.066 20.5 1 2G4.7 2.043 

of the solutions in terms of the ratio ~I~~~~, 
which is the heap-transfer coefficient for con- 
vectkn alone divided by the coefhcient for 
combined radiation and convection. This correc- 
tion factor is reduced when the emissivity of 
the surface is decreased. However, the resuhs in, 
for example, Fig. 2(b) show that the effect of 
emissivity is very stight until E becomes smaller 
than about 05, so in some instances small 
emissivities are required to reduce the radiation 
exchange substantially. 

Another way to reduce the radiation exchange 
is to control the temperatures in the reservoirs 
at the ends of the tube. If the reservoir tem- 
peratures are raised to the proper values, very 
little heat will be exchanged with them and 
practically all of the heat supplied at the tube 
waff will leave by ~onve~t~o~. A few solutions 
were obtained where the inlet and exit reservoirs 
were maintained respectively at the wall tem- 
peratures computed from equation (23) for 
convection alone at X = 0 and X = L. The 
results gave wall and gas temperatures that were 
within a few tenths of a per cent agreement with 
the Gore-convection solution, so that the net 
radiation effect was eliminated, Under these 
conditions the convection coefficient could be 

measured directly in a tube without the need for 
applying a radiafion correction. 
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RbumB-Cet article prksente une &de analytique de l’influence du rayonnement sur les &changes par 
convection dans une conduite circulaire. On impose B la paroi du tube un flux de chaleur constant g 
l’aide d’un dipositif exterieur (chauffage Clectrique constant par exemple), la distribution de temphra- 
ture & la paroi est donde par le calcul. Le ga.z qui s’6coule dans le tube laisse passer le rayonnement 
et ne modifie pas, par suite, les &changes par rayonnement entre les Cltments de le paroi interne de la 
conduite. On suppose que l’intbrieur de la conduite est une surface grise diffuse et que l’extkrieur 
est parfaitement isole. Les solutions dependent de sept paramktres independants tels que: Bmissivitk 
de la paroi, temfirature d’entrh du gaz, rapport longueur/diam&re du tube. Des exemples numkriques 
montrent l’influence de ces parametres et la faGon dont le rayonnement modifie la distribution de 

tempkrature a la paroi qui existe lorsqu’il n’y a que de la convection. 

Zusammenfassung-Der Einfluss der Wgrmestrahmng bei gleichzeitigem konvektivem WLmeiibergang 
wird fiir ein zylindrisches Rohr analytisch untersucht. Mit einer gleichmPssig gewickelten elektrischen 
Heizung liess sich eine konstante WLrmestromdichte durch die Wand erreichen; die Temperatur- 
verteilung an der Wand lieferte die Analyse. Das im Rohr striimende Gas ist strahlungsdurchlgssig 
und start somit den Strahlungsaustausch zwischen den Fllchenelementen der Rohrinnenseite nicht. 
Diese Rohrinnenseite wird als diffus strahlende graue Fkiche angenommen; die Rohraussenseite sei 
adiabat isoliert. Sieben voneinander, unabhlngige Parameter wie z.B. das Emissionsverhlltnis der 
Wand, die Gaseintrittstemperatur, das Lgngendurchmesserverhlltnis des Rohres kennzeichnen die 
LGsung. Zahlenbeispiele zeigen sowohl den Eitiuss dieser Parameter wie such die Temperatur- 

verteilung an der Wand bei Wlrmestrahlung gegeniiber jener bei Konvektion allein. 

AHH~T~~~J~-III~~B~~HTcH aHanHTHYecKoe paccMoTpem4e njImI~nfi .~IyYiIc~oro TennooikeIra 
Ha OAHOBpeMeHHO IlpOHCXO~fIIQH~ BHyTpEI KpyrJIOi Tpy6LI KOHBeKTMBHbIti nepeHOC TeIIZIa. 
~pIJHIWaeTCJI,YTOYepe3 CTeHI~yTyp6bInpOXO~~~TnOCTOFiHHbIZiTenjIOBO~nOTOK,CO3~aBaeMbIir 
CnOMOUbIO KaKOrO-JIH60 BHeIIIHerO CpeACTna, HanpIIMep,nOCTOHHIIbIM HarpeBOhl3JleHT~~l~~- 

CNLIM T~K~M. AHanMTHYecKM HaxonaTcn pacnpene2eHne Tei+lnepaTppbr Ira CTeHlie. Ik3, 

npoTeKaIowm? B Tpyp6e,npoapaqea M noaTo,ny me oKa3bIBaeT BJIH~H~~~ Ira nyYIwbIB TewIo- 

06MeH Memay 3JIeMeHTaMII BHyTpeHHeti nOBepXHOCTI4 Tpy6bI. npMHRT0, YTO DHyTpeHHRn 
CTOpOHa nOBepXHOCTH Tpy6bI SIBJIHeTCR paCCeEIBaIOWeti CepOii nOBepXHOCTbI0, a IIapyFKIIafI 
CTOpOHa XOpOmO Il3OJIIIpOBaHa. PemeHEIe AaGTCR KaIi @yHKIUIR CJIeAyIOWMX He3aBIICIIMbIX 
napaMeTpoB: K03@&IqHeHTa nyYemcnycr;aHmI CTeHKB, TeMnepaTypbI ra3a rra sxoae &I 
OTHOmeHIIR AJIHH~I ~py6b-1 K eB AHaMeTpp. npIiB0~n~cn YHGIeHHbIe pemeamn, H3 KOTOpMx 
nn~~0 n;IMRHne ~TIIX napa>reTpoB Ha npouecc TennooBmfeIIa. Pememm nOKa3bIBaIOT, 131; 
Ii3nyYemIe II3kleIIneT pacnpe;leneIme TernepaTyp Ha cTeHKe! Cmo~Iwneecfl nOJ BO3ZeircTBIle~l 

OAHOti KOHBeKIJHM. 


