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Abstract—The influence of thermal radiation exchanges inside of a circular tube combined with
convective heat transfer is studied analytically. The tube has a uniform heat flux imposed at the wall
by external means such as uniform electrical heating, and the wall temperature distribution is found
from the analysis. The gas flowing within the tube is transparent to radiation and hence does not
influence the radiation exchange between elements of the internal tube surface. The inside of the tube
wall is assumed to be a diffuse gray surface, and the outside is perfectly insulated. The solutions are
governed by seven independent parameters such as the wall emissivity, inlet gas temperature, and
length—-diameter ratio of the tube. Numerical examples are given to show the influence of these
parameters and to demonstrate how radiation alters the wall temperature distribution that would
exist for convection alone.

NOMENCLATURE

specific heat of fluid;
tube diameter;
geometric configuration factor for
radiation from an element on the tube
wall to the circular opening at the end
of the tube;
dimensionless heat-transfer coefficient,
(hlg)g/a)'*;
heat-transfer coefficient which includes
both convection and radiation;
convective heat-transfer coefficient ;
geometric configuration factor be-
tween elements on inside of tube wall;
thermal conductivity of gas;
Iength of tube;
dimensionless length, L/ D;
Nusselt number, 2D/k;
Prandtl number, ¢ u/k;
heat added per unit area at tube wall;
total incoming radiation per unit area
to a surface element;
total outgoing radiation per unit area
from a surface element;
Reynolds number, u,, Dp/u;
Stanton number,

4 Nu/RePr = 4h/u,, pc,;
temperature;
dimensionless temperature, (o/q)V1T;

mean gas velocity;
X, axial length co-ordinate measured
from tube entrance;

X, dimensionless co-ordinate, X/D;

€, emissivity of surface;

@ viscosity of gas;

z, dummy integration variable;

£, dimensionless variable, 5/D;

P density of gas;

a, Stefan-Boltzmann constant.
Subscripts

e, exit end of tube;

g gas;

i, inlet end of tube (except in symbol ¢,);

¥, reservoir;

w, inside surface of tube wall.

INTRODUCTION
HEAT transfer by forced convection to a gas
flowing in a tube has received detailed study in
the literature, but little consideration has been
given to the added effects caused when thermal
radiation is also present. The radiation exchanges
become especially important at the high tem-
perature levels encountered in advanced types
of power-plants such as the nuclear rocket. In
some instances, the radiation will impose an
additional heat load on a part which is to be kept
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cool, and hence this exchange must be estimated
when the cooling requirements are computed.
In other cases, the radiation will help reduce the
temperature of a region operating at a high
temperature.

This paper is concerned with the energy
exchanges that occur inside a tube when heat is
being transferred by radiant interchange be-
tween elements on the tube wall and by forced
convection to a gas which does not absorb or
emit radiation. The tube is heated by an ex-
ternally applied uniform heat flux imposed at
the wall. This heat flux would usually be caused
by a uniform heat generation in the wall, such as
in the channel of a nuclear reactor or in a forced-
convection experiment with an electrically
heated tube. The gas is heated only by convec-
tion from the wall, and the amount of this heat-
ing depends on the difference between the local
wall and bulk gas temperatures and on the
convective heat-transfer coefficient. The thermal
radiation between elements of the wall inside
the tube alters the wall temperature distribution
from the pure convection case and this in turn
influences the gas temperature variation along
the tube length.

Some previous work on combined convection
and radiation has been given [1-3]. The latter
two references deal with flow in a tube such as
treated in the present paper, but are limited to
the condition that the radiating surface is black
(e = 1). In [2], one numerical case was obtained
for a short tube by division of the tube length
into several isothermal sections, after which a
heat balance on each of these regions was taken.
This resulted in a set of nonlinear algebraic
equations which were solved for the wall tem-
perature in each isothermal zome. In [3] the
problem was examined in greater detail and
numerical solutions were carried out to show
the effect of each of the independent parameters.
Two methods of solution were employed. In
one, a separable kernel was used to approximate
the geometrical configuration factor for radia-
tion between elements of the internal tube
surface. With this approximation, the integral
equation could be transformed into a second-
order ordinary differential equation which was
integrated numerically. In the second method of
solution, the integral equation for the tempera-
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ture distribution was placed in finite-difference
form. This gave a set of nonlinear algebraic
equations which were solved by using the
Newton-Raphson method. The second method
was used principally as a check on the first, and
good agreement was obtained. In [4] the special
case was considered where the convection is
negligible compared with the radiation, and wall
temperature distributions were found for both
black and diffuse gray radiation.

The present paper provides the additional
analysis necessary to extend [3] to include
diffuse gray radiation. The resulting equations
reduce to those in [3] as a special case when
e = 1. The gray-wall assumption is made, which
states that the emissivity and absorptivity are
independent of wavelength and are equal. They
still could be a function of wall temperature, but
it is assumed that they are constant over the
wall temperature range for any numerical case (in
some references the independence with tempera-
ture is also included in the gray assumption).
Both of the methods given in [3] can be used to
solve the gray-wall equations. However, the
direct numerical solution of the integral equation
became quite involved and hence using a
separable kernel was the most convenient of the
two methods. The approximations made in
the separable-kernel method are confined to the
radiation terms. For gray walls, the radiation
exchanges would be expected to contribute a
smaller fraction of the total heat transfer than
for black walls, so the error in the approxima-
tions is decreased when the emissivity is less
than 1. Hence the separable-kernel method
should be satisfactory for the gray-wall problem,
since in [3] it was shown to give reasonable
results for the black-wall case.

ANALYSIS

The system to be analyzed is shown schema-
tically in Fig. 1. A transparent gas at a specified
inlet temperature 7, ; flows into the tube and is
heated to an average exit temperature 7, ,. A
uniform heat flux g is supplied to the tube wall
by external means (e.g. electrical heating, nuclear
fission), and the outside surface of the tube is
assumed insulated. Each end of the tube is
exposed to an outside environment or reservoir
which is at a specified temperature 7, ; at the
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inlet end of the tube and at T,, , at the exit end.
The inside of the tube wall is a diffuse gray
surface with an emissivity e. It is assumed that
there is no axial conduction in the tube wall or
in the gas and that the convective heat-transfer
coefficient 4 is a constant throughout the tube.
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Fic. 1. Circular tube geometry.

Energy balance

The energy balance including radiation ex-
changes will be derived by use of Poljak’s net-
radiation method described in [5]. According
to this method, we let g, be the rate of outgoing
radiation from the surface, which is composed
of the direct emission plus the reflection of
incoming radiation. The rate of incoming
radiation to an element on the surface is desig-
nated as ¢;. Then for an element on the tube
surface the energy balance can be formed as

q+4q; =gy + AT (X) — Ty(X)]- ¢y

The terms on the left are the externally imposed
heat input g and the incoming radiation. On the
right there is the outgoing radiation and the heat
leaving by convection from the wall to the gas.
T, — T, is the local difference between the wall
temperature and bulk gas temperature. The
imposed heat flux ¢ and the convective heat-
transfer coefficient # are assumed independent
of axial position, although variations along the
tube could be accounted for in the analysis. The
radiation terms are now considered in detail.

The radiative heat flux ¢, leaving a surface
element is composed of direct emission, esT?,
and of reflected radiation which is (1 — ) times
the incoming radiation:

go = €aTy + (1 — €)q. (2

The incoming radiative heat flux ¢, is composed
of two types of terms, the radiation coming from
the reservoirs at the ends of the tube and the
radiation arriving as a result of the outgoing
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radiation from the other elements on the internal
tube surface. These quantities can be written as

q; = oT?, F(x) + oT} , F(I — x)
+ [ qo()K(x — §) d¢
+ [Lg(EK(E — x)dé. (3)

The function F(x) is the geometric configuration
factor for radiation from an element on the tube
wall at location x to the circular opening at the
inlet end of the tube. This factor is given by (2]

x2 -+ 1/2

Fx) = @i
It has been assumed that the reservoirs can be
represented by black circular disks at the end
openings of the tube. This would be a good
approximation in many instances when the
reservoirs are chambers with dimensions larger
than the tube diameter, which causes the reser-
voirs to behave like black-body cavities when
viewed through the end openings. The function
K(z) is the configuration factor between two
rings on the inside surface of the tube a distance
z apart and is given by [2]

2322
(2 + 12

Equation (3) is substituted into equation (1)
to eliminate ¢; with the result

h[Ty(x) — T,(x)] + g0 = g + oI}, F(x)
+ o3 F(l — %) + [{qo(HK(x — §) d¢
+ [Laf(HK(E — x)dé. (6)

This equation has three unknowns g4, T, and T,
so two additional relations are needed. To
relate ¢, and T,, equations (1) and (2) are
combined to eliminate ¢; with the result

(1

xz0.

Q)

K@) =1— 20. (5

do = [h(T T,) —ql+oT, (7)
To relate T, and T, an additional heat balance
is written for the flowing gas. Since the gas is
transparent to radiation, the only heat trans-

ferred to it is by convection from the wall. For
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a cylindrical volume element of length dX and
diameter D, the heat transferred is

haD dX [To(X) — To(X)].

This is equal to the net heat carried out of the
volume element by the flowing gas, which is

=D*  dT,
U =4 P gx

The mean fluid velocity u,, is assumed constant
so that kinetic energy changes of the gas are
neglected. These two quantities are equated and
the result is rearranged into the form

dT,

a? =S [Tw(x)
where S is the Stanton number, 44/u,, pc,, and
x = X/D.

Equations (6-8) form a set of three simultane-
ous equations for the three unknowns 7, T,
and g,. Only the first two of these are of physical
interest, so g, will be eliminated as the analysis
proceeds.

dXx.

T,(x)] ®

Transformation to a differential equation

The integral equation (6) can be reduced to a
differential equation by use of an approximate
separable function for the geometric kernel K.
The approximation used in [3] and [4] was the
exponential function

K(z) ~ e72:

This gave very good results for short tubes with
length-diameter ratios less than about 10, as
shown in [3]. For longer tubes, it was pointed
out in [6] that this approximation becomes less
accurate and K(z) is better approximated by a
sum of exponential terms. However, in the
present problem, for long tubes convection
generally becomes more dominating, as shown
in Fig. 12 (see p. 658), and hence the approxi-
mation for the radiation exchange does not have
to be as precise. For this reason the approxima-
tion in equation (9) appears adequate for the
combined radiation and convection cases treated
here.

Equation (9) is substituted into equation (6)
and the resulting equation is differentiated twice
to give

2= 0. )
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&T, T,  dy, 1
dx® dx?® ) dxz
d2F 2 _
= ory S0y gy PR
. (10)

L4 [1 J 4o(6) ¥ d¢

o | e ae] — dgo.

J

The integrals in equation (10) are eliminated by
subtracting four times equation (6), which gives

h &, d—T 4T 4T, )
( dx2 - ’dx . w —Y_ 9
d*F(x)
+ ’d_;zo - - 4q -+ O'T:i l:" d;7 - 4F(x)]
d2F(/
ot | ara—»]. an

The quantity d%g,/dx* can be eliminated by
means of the expression obtained by differ-
entiating equation (7) twice:

&gy A1 — ¢ (T, &,
dx e (dx2 a d&?)
der,, dT,\?
+ 40T2 4 + 120T2 (dd “’) (12)

To eliminate the second derivative of the gas
temperature, equation (8) is differentiated and
then equation (8) is substituted in the result to
remove d7,/dx. This gives

&1, _[dT,
dX - =5 [ - S(Tw - Tv)}

The result of substituting equations (12) and (13)
into equation (11) is the following differential
equation which has been placed in dimension-
less form:

(13)

d,, dr,, SH dr,,
d2(413+ >+12[ (dx) e dx

2H S2
+ e (5: — 4H) ("? — 4H) —4

d2Fi
+ 11, [—&,fo) - 4F(x)]
d2F(l —
e
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Equations (14) and (8)

-—uuv.-v =)

equations for the wall and gas temperatures
along the tube. They could be solved by num-
erical integration in their present form, but
before this is done an additional simplification
is made. It was shown in [3] and [4] that the
configuration factor F could be approximated
with good accuracy by the exponential function

are two simultaneous

22}

3 . (15)

F(x) ~

With this function, the quantity [d2F/dx? — 4F]
is equal to zero and hence the reservoir tempera-
tures ¢, ;and t,, ,do not appear in the differential
equation (14). The reservoir temperatures will
enter the solution through the boundary condi-
tions. To summarize: the final differential equa-
tions to be solved simultaneously are

3, ds,,
)

2
S (P )
e dx
2
=1, (S—:»{ —_ 4H) — 4 (16a)
dt,
o = S, — t,). (16b)

Boundary conditions

Equation (16b) is a first-order equation and
hence requires only one boundary condition.
The condition is that at the inlet of the tube
the gas temperature has a specified value ¢, ,:

a7n

Equation (16a) is a second-order equation
and requires two boundary conditions. These
are found by use of the approximations for K
and F in the integral equation (6) and then
evaluation of it at x =0 and x =/ At x =0
this gives:

h[T.,(0) —

t,=1t, ; at x =0.

T,(0)] + q4(0)
oT?,
2

+ fiqi(§) e d¢ (18)
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while at x = [:
A[T(1) — To()] + qol)

O-T4 e—2l

o3,
=gq 4+ .

2

1 12
+@j%®éwa0%
0

The outgoing radiation g, is eliminated by means
of equation (7), and part of the integration can
be carried out analytically. This substitution
was carried out only for the boundary condition
at x = I, because the condition at x = 0 is used
in a different form as described in the next
paragraph. The final form of equation (19) with
g, eliminated and the result rearranged into
dimensionless form is

(1 e—2l

T tem 14

HT 1 #
:=7UAD—%®J+Q®—~§

L

In order to begin a numerical forward inte-
gration of equations (16a) and (16b) it is
necessary to know at x = 0 the values of the
wall and gas temperatures and the first
derivative of the wall temperature. The inlet gas
temperature is specified for any particular
problem, but the wall temperature at x = 0 is
unknown and will have to be found by trial and
error, as discussed later. For determination of
the initial wall temperature derivative, equa-
tion (6) with the approximate K and F from (9)
and (15) is differentiated once and evaluated at

=) H(t, — 1,) + 14] ~2(1-2) dx. (192)

x =0.
dar,, dT, dqg,
h(ﬁzo—a;0)+dx

= — o} + oT},e7® £ 2 i q4(¢) e 72 d&.
The integral on the right is eliminated by means
of the boundary condition at x = 0, equation
(18); then g,0) is eliminated by means of
equation (7), dg,/dx at x = O by the first deriva-
tive of equation (7), and dT,/dx by equation (8).
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The resulting equation is solved for the initial
wall temperature derivative which has the final
dimensionless form

d¢,, 1

a;mm:ﬁii&mﬂH“+men_”d

4+ 264 (0) — 2 — 2et? ‘}. (20)

Since the boundary condition at x = 0, equation
(18), has been used to obtain this relation, this
boundary condition will always be fulfilled at
the start of the numerical integration. Hence
the only boundary condition which remains to
be satisfied is equation (19a), and this will be
fulfilled when the proper value for ¢,,(0) is found.

Numerical solution

To carry out a solution it is first necessary to
choose a value for each of the seven independent
parameters that are involved. These are H, S,
t,, i» by, o 14, »» | and e. The simultaneous equa-
tions (16) for the wall and gas temperatures were
programmed for solution on a digital computer
with a forward integration technique. This has
been described in [3] where the increment sizes
required and the sensitivity of the solution are
discussed for a similar type of equation. The
same computational procedure was used in the
present paper and it is not worthwhile to repeat
the details here. After assigning values to the
parameters, the next step is to estimate a value
for the wall temperature at the beginning of the
tube #,,(0). From this value the wall temperature
derivative at x = 0 can be found from equa-
tion (20). With these initial values, the forward
integration of the differential equations can be
carried out, and the solution is then substituted
into the boundary condition equation (19a).
If (19a) is not satisfied, then a new trial for
1,(0) is made and this process is continued until
the desired solution is found.

Over-all heat balance

An additional check of each numerical solu-
tion was made by making sure that it always
satisfied an over-all heat balance. The individual
terms in the heat balance also provide some
useful information that will be tabulated later.
The balance was derived from the following
terms: The heat imposed at the tube wall is
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grDL. The heat carried away by the gas is
pugc (mD¥AXT, , — T,. ;). The heat radiated in
from the reservoirs at the ends of the tube is

L
oD [T“ ,.L F (—)D{) dx

C(E (L X
1 F (5= )]

and the heat radiated from the tube surface out
through the ends of the tube is

L X L X
0 | [ F (5) + £ (5-)] o
The heat balance is formed from these terms and,
after substitution of the approximate exponential
functions for K and F, the integrals of the F

terms are carried out analytically. The heat
balance is then placed in the dimensionless form

H (1 —e2)
— S R
L Glai by
(1—e?®)  H
==y Mttt
L[ ‘Io[
+ - P e—2;v _+_ e—2(l«x)} dX.
2L q

The outgoing radiation ¢, is eliminated by
substitution of equation (7), and two of the
terms under the integral can then be integrated
analytically. After rearrangement, the heat
balance takes the final form

H 1, (1— o
. i ot __a—21 P — p~
[+t i+ —e)+ g =l —e)
r H
S _ a—2ly e _ .
- (1 ¢ ) 4 + StU,e

+ %jl [(i;f—) H(t, — 1)) + t;}

0 €

[e-2 | e~20-9]dx. (21)

INDEPENDENT PARAMETERS
Before the results of the analysis are discussed
it is desirable to review briefly the seven inde-
pendent parameters that must be chosen for
each numerical case.



CONVECTIVE AND RADIANT HEAT TRANSFER

(1) e is the emissivity of the wall which is
assumed to be a diffuse gray surface. The
variation of emissivity with temperature is
assumed negligible over the range of tempera-
tures encountered in each solution. Examples
are given for e ranging from 1-0 for a black wall
to 0-01 for a highly reflecting wall.

(2) ! is the tube length expressed in terms of
tube diameters. This geometry factor has an
important effect on the wall temperature distri-
butions as it determines how well the internal
surface of the tube can exchange radiation
directly with the external reservoirs.

(3) H is the parameter (4/q) (g/o)V/%. When ¢
has a fixed value, H is directly proportional to
the convective heat-transfer coefficient.

(4) The specified temperature of the gas
entering the tube is expressed in terms of the
parameter f,, ; = T, {o/q)*. When £, ; is
increased, the temperature level in the system is
raised and this increases the radiation exchanges.

(5) The inlet and exit reservoirs are expres-
sed in terms of the dimensionless groups
t, ¢ = Ty, {o/@* and ., , = T,, [0/
When g is a specified constant, the dimensionless
groups are directly proportional to the reservoir
temperatures.

(6) The parameter S is the Stanton number
4Nu/RePr = 4h/u,pc,. For a fixed g and 4, an
increase in S, caused for example by a decreased
flow rate, increases the axial gas temperature
gradient along the tube.

RADIATION CORRECTION FACTOR FOR
HEAT-TRANSFER COEFFICIENT

In addition to the foregoing parameters there
is one more quantity which should be discussed
before the specific results of the analysis are
presented. This deals with the interpretation of
forced-convection experiments in electrically
heated tubes to determine convective heat-
transfer coefficients for high-temperature condi-
ditions. To determine the local heat-transfer
coefficient, measurements would be made of
local wall and gas temperatures in the tube.
Then with ¢ known, the experimental heat-
transfer coefficient would be hexp = q/(T, — T,).
This is not a convective coefficient because it is
the result of both radiation and convection
processes within the tube. There are some
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additional effects such as the axial heat con-
duction in the tube wall which would contribute
to hexp, but since these have not been included
in the present analysis they cannot be discussed
here. To obtain A for convection alone it is
necessary to correct hexp to account for the
radiation exchanges, and a theoretical radiation
correction factor can be derived from the
present analysis. This is given as the ratio
#/hexp, wWhich can be multiplied by the ex-
perimental coefficient for combined radiation
and convection to yield the coefficient for
convection alone. The ratio is equal to
hihexp = (h/q) (T, — T,), or in dimensionless
form H/Hexp = H(t,, — t,). This was evaluated
from the wall and gas temperature distributions
found in the analysis, and results will be given
in the sections that follow.

LIMITING CASES OF PURE CONVECTION
AND RADIATION AND THEIR SIGNIFICANCE

There are two limiting cases which are useful
for comparison with the present results. One is
the result for pure convection which is achieved
when the radiation effects are very small. This
limit would be expected as the temperature level
of the system diminishes, as the emissivity of
the surface decreases toward zero, or as the
convective heat-transfer coefficient becomes
very large. For pure convection with fully
developed flow and heat transfer in a tube where
there is a uniform heat addition at the wall, both
the gas and wall temperatures rise linearly along
the tube length. The gas temperature variation
can be found from a heat balance on the flowing
gas, which states that

2
gD dX = u, f? pey 3—? dx.

This is integrated to determine T, and the result
can be placed in the dimensionless form

S
=g X+l
The local wall temperature differs from the local
gas temperature by a constant which is found
from the convective heat-transfer coefficient,

22)

a=KT, —T)or T, =1 +T,
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After substitution of equation (22) for the gas
temperature, the wall temperature can be placed
in the dimensionless form,

S 1

t1u:Hx+y+fy, 7o (23)

The limit of pure radiation is reached when
convection becomes small compared with the
net radiation exchange. This will occur, for
example, when the convective heat-transfer
coefficient is small or when the temperature
level in the system is high so that the radiation
exchanges are large. It was shown in [4] that,
by use of the net radiation method, the solution
for a diffuse gray wall could be easily found
when the result for a black wall was known.
This led to the following solution for the wall
temperature obtained by using the approximate
separable kernel method:

PR EE CE

_% [__ 1/4
) (%1—’9} . (24)

Because of the approximations used in [4], this
relationship becomes less accurate for long
tubes (L > 10), but still should indicate the
general trend of the pure radiation temperature
levels.

These limiting cases can be used to obtain
some insight into the nature of some of the
solutions that follow. This interpretation applies
when both reservoir temperatures are lower than
the wall temperatures so that there is no net
radiation to the wall from the environments. In
this instance, all of the heat that leaves the tube
by convection or radiation arises from the ¢
imposed at the wall. The wall temperatures re-
quired to dissipate the heat by pure convection
or by pure radiation are obtained from equations
(23) and (24). The limiting case that gives the
lowest temperatures corresponds to the mech-
anism by which the heat can be transferred from
the tube most efficiently. Since heat can be
transferred by both mechanisms more effectively
than by either process alone, the wall-temperature
solution will fall below the envelope formed by
the pure-convection and pure-radiation curves.
If one limiting curve falls considerably below the

~+ (tf,i -
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other, the exchange mechanism for the lower
curve is much more efficient than the other
process and it will dominate the heat transfer.
In this instance the wall temperatures will be
slightly below the lower curve. However if the
limiting curves fall close together this means
that both exchange mechanisms are of com-
parable efficiency and the wall temperatures for
combined radiation and convection will fall
considerably below both limiting curves. This
discussion will be illustrated in the sections that
follow. It can also be used to interpret how the
results would change if the convective heat-
transfer coefficient were a function of X, such
as in a thermal-entrance region. There, the

convective-wall-temperature curve would be

owine to hicher The
1g algher ine

temperatures for combined radiation and con-
vection would be expected to fall below this
convection curve.

wall

h-valueg
waii

nTYyaiuvs,

lower
lower

RESULTS FOR SHORT TUBES (L/D =

Solutions for various values of the parameters
were obtained for a short tube having a length-
diameter ratio of 5. The values of the parameters
were chosen to show the behavior of the system
over a physically realistic range of variables.
For short tubes, the entire inside surface of the
tube can readily exchange heat by radiation
directly with the external environment, and
hence the radiation effects would be expected
to be more important for the short than for the
long tubes. For most of the cases that follow,
the inlet reservoir temperature was set equal to
the inlet gas temperature (¢,, ; = ¢,, ;), and the
exit reservoir temperature was set equal to the
exit gas temperature (¢, ,=1t,, .). For cases
where this was not done it will be specifically
noted.

Effect of emissivity

The effect of wall emissivity on the wall
temperature distribution is shown in Fig. 2(a)
for typical fixed values of the other parameters.
When the wall emissivity is decreased, the
radiant-heat transfer becomes less efficient and
hence the wall temperatures for pure radiation
increase. For pure convection, however, the
wall temperatures remain the same, since this
solution is independent of emissivity. Then, as
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F1G. 2(a). Effect of wall emissivity on temperature distributions in a short tube.
= 5, H= 0'8a S = O'OL trys =1g,; = 1'5, Irye =1g, e

discussed in the section on limiting cases, the
computed wall temperatures should fall closer
to the pure convection curve as the emissivity is
decreased. The effect of emissivity on the pure-
radiation curves was found to be small for values
of € between 1-0 and 0-5, and consequently in
this range ¢ has little influence on the solution.
Table 1 gives the amounts of heat being trans-
ferred by convection to the gas and by radiation

to the reservoirs. The radiation loss to the
reservoirs causes the wall temperatures to drop
off near the ends of the tube. As expected, when
¢ decreases a greater portion of the heat is
transferred to the gas. This is also shown in the
lower part of Fig. 2(a) where the gas temperature
variation approaches the pure convection line
as e becomes small.

In Fig. 2(b), the solutions in Fig. 2(a) are
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plotted in terms of the radiation correction factor
H{Hexyp, which was discussed previously. Even
for an emissivity as low as 0-01 the correction
factor is quite large and the effect of radiation
cannot be ignored when compared to the con-
vection effects.

Effect of Stanton number

In Fig. 3, the results for different values of
Stanton number S are plotted for ¢ == 1 and
0-01. For the same convected heat transfer, an
increase in the Stanton number tends to increase
the axial temperature gradient along the tube.
The present results show that this parameter
does not have a significant effect over a physi-
cally realistic range of values. Since the changes
with S are not large, the influence of ¢ can be
shown for this entire range of S by choice of a
typical S-value and giving results for several e.
This is given in Fig. 2(a) where § =001 is
chosen. This is a reasonable value as shown by

Table 1. Fractional heat losses by convection and radiation for a short tube, | = 5

Convection  Radiation to  Radiation to
€ tr e out/ inlet reservoir/ outlet reservoir/
heat in heat in heat in
Effect of ¢ 0-01 1-546 = tg, . 0-734 0136 0-130
(H =08, 5 =001, o1 1-528 =14, 0:440 0282 0-278
tr e =ty ;=15 1 1522 =1, , 0-345 0-329 0-326
Effect of § S = 0-005 001 1523 =+¢,, . 0736 0133 0-131
(H=1038, 0:005 1 1-511 = ¢4, 0-346 0-328 0-326
te, i = 1y, ¢ = 1+5) 002 0-01 1:591 = ¢, . 0728 0144 0-128
0-02 1 1543 = 1,, 0-341 0333 0-326
Effect of H H=02 001 1575 = ¢,, . 0-300 0-357 0-343
(S =001, 02 1 1:527 =1,, . 0-108 0-449 0-443
te, =1y, i = 1'5) 15 0-01 1-529 = ¢,, . 0-873 0-065 0-062
15 1 1517 =1¢,, . 0-513 0-245 0242
Effect of #,, ¢ ty, 1 =035 001 0558 = 1,, , 0928 0035 0-037
(H =08, § =001, 05 1 0544 =1, , 0-708 0-144 0-148
fr, 5= 1g, 1) 30 001 3025 = ¢, 0-394 0-323 0-283
30 1 3006 =1, . 0-090 0-459 0451
Effect of ¢, » 0-01 0 0-719 0-095 0-186
(H= 08,5 =001, 1 0 0-287 0-306 0-407
te, s =15, i = 15) 001 5 1-782 4-861 — 5643
1 5 1-993 4-767 — 5760
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use of the formula for fully developed turbulent
pipe flow, Nu = 0023 Re®® Pr4, The value
of S for Re = 100000 and Pr = 0-7 is about
0-011.

Effect of heat-transfer coefficient

The results for different values of H are shown
in Fig. 4 for emissivities of 1 and 0-01. If q is
constant, a variation of H corresponds to a
proportional variation in the heat-transfer

coefficient 4. Since the parameter S, which also
contains A, is being kept constant in Fig. 4, this
implies a similar proportional variation in
pUnC, to keep S constant while H is varied. It
was shown by Fig. 3 that a variation of pu,,c,
as contained in S does not have a large effect
on the results for 4 held constant, so that Fig. 4
primarily indicates the effect of different A-
values.

For a small H, the convection is poor and the
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FiG. 4. Effect of dimensionless convective heat-transfer coefficient H on temperature distributions in a short tube.
F=5,8=001¢,,=1t,:= 151, .= 14

pure-convection solution gives high wall tem-
peratures. For H =02 the pure convection
result is higher than the pure radiation curve for
e =001, so even for this low emissivity the
heat can leave the tube more efficiently by
radiation. Hence the solution lies below the
pure radiation curve. For H = 1-5, however,
the pure-convection curve gives much lower
temperatures than the pure radiation solution for
€ == 0-01, and the solution lies slightly below the

convection results. For H = 0-8, the details
on the effect of emissivity are given in
Fig. 2.

Effect of inlet gas temperature

Figure 5 shows the effect of varying the inlet
gas temperature in a duct of length 5. As the
temperature is raised, the radiation exchanges
‘become more important and the solutions move
toward the pure-radiation curves. The effect of
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wall emissivity is shown in detail in Fig. 2 for
t,, ; equal to 1-5.

Effect of exit reservoir temperature

For the preceding cases the exit reservoir
temperature was set equal to the exit gas
temperature. In Fig. 6 the exit reservoir tem-
perature was set at different values independent
of the exit gas temperature. The results demon-

strate the large influence that the exit reservoir
has on the tube-wall temperature distribution.
Table 1 shows that in some cases the heat
radiated into the tube is as large as the heat
flux imposed at the wall. If the inlet reservoir
were heated it would be expected to produce
the same type of effect near the tube entrance.
Hence in this instance, for a rocket engine where
the nozzle walls can see the combustion chamber,
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this indicates that the heat load on the wall may
be quite large because of the radiant inter-
change.

RESULTS FOR A LONG TUBE (L/D = 50)
Results will now be given for a long tube with
a length-diameter ratio of 50. In the central
portion of the tube the wall temperatures fall
close to the pure-convection solution. This

shows that the net radiation exchange is very
small even for ¢ = 1, and hence in this region
heat is transferred mainly by convection. Near
the ends of the tube the wall can readily exchange
heat with the reservoirs, and hence in these
regions the net radiation exchange can be quite
Jarge. This causes the wall temperature near
the ends to be close to the pure-radiation
solution.
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Table 2. Fractional heat losses by convection and radiation for a long tube, | = 50

Convection  Radiation to  Radiation to

€ tr e out/ inlet reservoir/ outlet reservoir/

heat in heat in heat in

Effect of ¢ 0-01 2:066 = t,, . 0-906 0-039 0-055
(H=038,S=001, 01 2047 =1, . 0-875 0-053 0-072
try ¢ =14, ;= 1'5) 1 2043 =+, . 0-869 0-056 0-075
Effect of S S =001 0-01 2:066 = ¢4, . 0-906 0-039 0-055
(H =08, 0-01 1 2:043 =1¢,, . 0-869 0-056 0-075
ty, i =1y ;= 15) 0:02 0-01 2:061 = t¢,, . 0-881 0-044 0-075
0-02 1 2:556 = t,, . 0-845 0-059 0-096

Effect of H H =02 0-01 2743 =1¢,, . 0-497 0-240 0-263
(S =001, 0-2 1 2691 =1, . 0476 0-251 0-273
ty, i =14, : = 1'5) 0-8 0-01 2:066 = t,, . 0-906 0-039 0-055
0-8 1 2:043 =1, . 0-869 0:056 0:075

Effect of #,, ; ty, ;=15 001 2:066 = ¢, . 0-906 0-039 0-055
(H=08,S=00I, 15 1 2:043 =¢,, . 0-869 0-056 0-075
fr, 1 = 1,5, 1) 3 0-01 3467 = t,, . 0-748 0-122 0-130
3 1 3444 = ¢, . 0-705 0-141 0-154

Effect of #,, . 0-01 0 0-895 0-039 0-066
(H =08, 5=001, 1 0 0-851 0-056 0-093
te, i = t,,: = 1'5) 001 45 1-108 0-040 — 0-148

1 45 1-116 0-056 — 0172
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Effect of emissivity

The effect of wall emissivity is shown in
Fig. 7(a). The emissivity has an effect only near
the inlet and outlet reservoirs. As emissivity is
decreased, heat cannot be radiated as efficiently
and the wall temperatures tend toward the pure-
convection solution. In the central part of the
tube, heat is transferred mostly by convection.
The small amount which is transferred by
radiation is independent of the emissivity. This
is because the radiation for a small emissivity is

R. SIEGEL and M. PERLMUTTER

reflected and re-reflected from the walls many
times before it can escape to the ends of the tube.
The total effect of all the reflections causes the
radiation exchange to behave as if the walls
were black. Table 2 shows the amounts of heat
being radiated or convected from the tube. For
long tubes most of the heat is transferred by
convection.

In Fig. 7(b) the radiation correction factor is
plotted for the same cases given in Fig. 7(a). In
the central region the correction factor is close
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to unity so that, in an experiment, the convective
heat-transfer coefficient could be determined
directly without a significant radiation error.

Effect of Stanton number

The effect of Stanton number .S is shown in
Fig. 8 for emissivities of 0-01 and 1. The tem-
peratures obtained for pure radiation are quite
high since it is difficult for the heat to dissipate
from the central portion of the tube to the end
reservoirs. As a result, most of the heat leaves
by convection which is the more efficient heat-

PURE
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transfer mechanism and the solutions are con-
vection dominated. Since the pure-convection
results are quite dependent on the parameter.
S, the same dependence is present in the solu-
tions. The gas temperature curves in the lower
part of the figure are close to the pure convection
line owing to the small radiation losses.

Effect of convective heat-transfer coefficient
Figure. 9 shows the effect of the dimensionless

heat-transfer coefficient A on the temperature

distribution. In the central part of the tube, for
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large values of H the wall temperatures for pure
convection are much lower than for pure radia-
tion. As a result, practically all the heat is
transferred by convection in this region, giving
wall temperatures only slightly below the pure-
convection curve. The ends of the tube, how-
ever, can see the colder environment quite well,
and in this region heat is transferred by the
combined process of convection and radiation,
giving temperatures below the results for either
process alone. For a small H of 0-2 the wall

R. SIEGEL and M. PERLMUTTER

temperature distribution for pure convection is
higher than the pure-radiation curve; hence the
heat can leave more efficiently by radiation
which gives a solution that is strongly radiation
dominated.

Effect of inlet gas temperature

Temperature distributions for a tube of length
L/D = 50 and for various inlet gas temperatures
are given in Fig. 10. As the temperature level is
raised the radiation effects become more
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important and the wall temperature distribution
has a slightly greater deviation from the results
for pure convection. When the emissivity is
decreased, the direct radiation losses to the
reservoirs are smalller and the wall temperatures
near the ends of the tube are not as low as they
were for e = 1.

Effect of exit reservoir temperature
For each curve in Fig. 11, the exit reservoir

PURE RADIATION
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has been maintained at a fixed temperature
rather than being set equal to the exit gas
temperature. When the exit reservoir is at a high
temperature, heat is radiated into the tube from
the reservoir which elevates the tube wall
temperatures near the exit end. When the
emissivity is decreased, the radiation exchanges
are reduced and the values move toward the pure
convection curve. Since, for L/D = 50, the exit
of the tube is far from the inlet, the temperature
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of the exit reservoir has no influence on the
solution near the tube entrance.

EFFECT OF TUBE LENGTH-DIAMETER
RATIO

In the previous sections, temperature distri-
butions have been given for short and long tubes
with length—diameter ratios of 5 and 50. Now,
as shown in Fig. 12, a few solutions are given
for tubes with L/D equal to 10, 20 and 30, so
that results can be interpolated for tubes with
other L/D. As discussed previously, convection
becomes more important as the tube length is
increased, and hence the curves move toward
the pure-convection results as L/D becomes
larger. For a low emissivity the curves are even
closer to the pure-convection results. This is
also demonstrated in Table 3 where numerical
results for several emissivities are given.
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FiG. 12. Effect of tube length on wall temperature
distributions. H = 08, S =001, #,,; = #,,: = 1'5,

e =g, e
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CONCLUDING REMARKS

The purpose of this report has been principally
to examine the effect of wall emissivity on com-
bined radiation and forced convection in a tube.
The inside of the tube wall was assumed to be a
diffuse gray surface and the gas flowing through
the tube is transparent to radiation. The con-
vective heat-transfer coefficient between the
tube wall and the gas was assumed constant.
In the thermal-entrance region this would not
be true, since the heat-transfer coefficient would
decrease with X, from a high value close to the
tube entrance to the fully developed value
which, for turbulent gas flow, is reached about
12 diameters down the tube. The high convection
coefficients at small X would decrease the wall
temperatures and hence lessen the radiation
effects. An indication of the magnitude of this
effect can be obtained by following the reasoning
given at the end of the section on limiting cases,
although a detailed study would be a subject for
future analysis.

For long tubes with an L/D of about 50, the
emissivity had very little effect in the central
region of the tube. In this region, convection
accounts for almost all of the heat transfer, and
radiation is relatively unimportant. The heat
radiated in the central part of the tube under-
goes multiple reflections between surface elements
before escaping to the ends of the tube. This
tends to produce the same net exchange as black
radiation from the wall, which further reduces
the influence of emissivity. Near the inlet and
exit of a long tube the radiation exchanges are
reduced when the emissivity is decreased, since
the direct radiation to the reservoirs at the ends
of the tube is smaller. For very short tubes this
direct radiation is important throughout the
entire tube length, and hence the wall emissivity
has a substantial influence on the entire tem-
perature distribution.

Some consideration was given to the inter-
pretation of forced-convection experiments with
electrically heated tubes for measurement of
convective heat-transfer coefficients at high
temperatures. When there is a large radiation
exchange in the tube, the measured heat-transfer
coefficients must be corrected to yield results for
convection alone. The magnitude of the radiation
effect was demonstrated by presentation of some
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Table 3. Effect of tube length on fractional heat losses by convection and radiation,
H=08S=00L,1,:=8 .= 15
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L
001 005 o1 1

Convection out/heat in 10 0764 619 0582 0-538
20 0-824 0755 0-740 0722
50 0-906 0881 0-875 0869
Radiation to inlet reservoir/heat in 10 0119 o191 0-209 0231
20 0086 0119 0126 o135
50 0039 0050 00353 0036
Radiation to outlet reservoir/heat in 10 o117 0190 0-205 0-231
20 0-090 0126 0-134 0-143
50 0-055 0069 0-072 0075
Exit-reservoir temperature 10 1-595 1-577 1-573 1-567
{tr, e = to, o) 20 1-706 1-689 1-685 1-681
50 2-066 2:051 2:047 2043

of the solutions in terms of the ratio H/Hexp,
which is the heat-transfer coefficient for con-
vection alone divided by the coefficient for
combined radiation and convection. This correc-
tion factor is reduced when the emissivity of
the surface is decreased. However, the results in,
for example, Fig. 2(b) show that the effect of
emissivity is very slight until ¢ becomes smaller
than about 0-5, so in some instances small
emissivities are required to reduce the radiation
exchange substantially.

Another way to reduce the radiation exchange
is to control the temperatures in the reservoirs
at the ends of the tube. If the reservoir tem-
peratures are raised to the proper values, very
litle heat will be exchanged with them and
practically all of the heat supplied at the tube
wall will leave by convection. A few solutions
were obtained where the inlet and exit reservoirs
were maintained respectively at the wall tem-
peratures computed from equation (23) for
convection alone at X =0 and X = L. The
results gave wall and gas temperatures that were
within a few tenths of a per cent agreement with
the pure-convection solution, so that the net
radiation effect was eliminated. Under these
conditions the convection coefficient could be

2F

measured directly in a tube without the need for
applying a radiation correction.
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Résaumé—Cet article présente une étude analytique de 'influence du rayonnement sur les échanges par
convection dans une conduite circulaire. On impose a la paroi du tube un flux de chaieur constant a
l'aide d’un dipositif extérieur (chauffage électrique constant par exemple), la distribution de tempéra-
ture a la paroi est donnée par le calcul. Le gaz qui s’écoule dans le tube laisse passer le rayonnement
et ne modifie pas, par suite, les échanges par rayonnement entre les éléments de le paroi interne de la
conduite. On suppose que l'intéricur de la conduite est une surface grise diffuse et que ’extérieur
est parfaitement isolé. Les solutions dépendent de sept paramétres indépendants tels que: émissivité
de la paroi, température d’entrée du gaz, rapport longueur/diamétre du tube. Des exemples numériques
montrent I'influence de ces paramétres et la fagon dont le rayonnement modifie la distribution de
température a la paroi qui existe lorsqu’il n’y a que de la convection.

Zusammenfassung—Der Einfluss der Wirmestrahiung bei gleichzeitigem konvektivem Wirmeiibergang
wird fiir ein zylindrisches Rohr analytisch untersucht. Mit einer gleichmaissig gewickelten elektrischen
Heizung liess sich eine konstante Warmestromdichte durch die Wand erreichen; die Temperatur-
verteilung an der Wand lieferte die Analyse. Das im Rohr stromende Gas ist strahlungsdurchidssig
und stort somit den Strahlungsaustausch zwischen den Flichenelementen der Rohrinnenseite nicht.
Diese Rohrinnenseite wird als diffus strahlende graue Fliche angenommen; die Rohraussenseite sei
adiabat isoliert. Sieben voneinander.unabhidngige Parameter wie z.B. das Emissionsverhiltnis der
Wand, die Gaseintrittstemperatur, das Lingendurchmesserverhiltnis des Rohres kennzeichnen die
Losung. Zahlenbeispiele zeigen sowohl den Einfluss dieser Parameter wie auch die Temperatur-
verteilung an der Wand bei Wirmestrahlung gegeniiber jener bei Konvektion allein.

Anporanua—IlpuBofurca aHATUTHYECKOE PACCMOTPEHHE BIMAHNA JIYUYHCTOIO TEILIOOTMeHa
HA OJHOBPEMEHHO TIPOMCXOJAIMIMI BHYTPU KpPYriofl TpyOsl KOHBEKTUBHLIN NepeHOC Tellla.
IHpurumaercsa, 9To Uepes CTeHKY TYPOBL IPOXOIUT TOCTOAHHBI TeNIOBOU MOTOK, CO3JaBaeMblil
C TIIOMOIIBIO KAKOT0-1160 BHEHIHET0 CPelCcTBa, HAIPUMEp, TIOCTOAHHBIM HAPPEBOM BIIeKTpuye-
CKUM TOKOM. AHAIUTHYECKM HAXOZUTCA pAaCIpefeieHUe TeMIepaTyphl Ha cTeHre. [as,
npoTexkaloluit B Tpyp0e, Npo3payed U N02TOMY He OKA3HIBAeT BIMAHMA HA JIYYUCTHIH Tellao-
O0MeH MemIy BJIeMeHTAMM BHYTpEHHel NOBEePXHOCTU TpyOul. IIpUHATO, YTO BHYTPEHHAS
CTOpOHA TIOBEPXHOCTH TpYOBI ABIAETCA PacCeHBAIIEH CepOl MOBEPXHOCTHIO, a HApyKHAA
CTOPOHA XOpOINO m3onuposaHa. Pemenue gaéres Kak OYHRIMA CIeRYLUX He3aBUCHMBIX
napaMerpoB: koa@duimeHTa INyUeHCIYyCKAHUA CTEHKHM, TeMIepaTrypsl rasa Ha BXoae u
OTHOIIEHMA IJIHMHH TPYGH K ed muamerpy. IIpMBOJATCA YHCIEHHBIC DEIUEHHS, U3 KOTOPBIX
BUIHO BJIMAHNE HTHX [APAMETPOB Ha Npolecc TenyooOmena. Pemenusa morasulBawT, Kak
H3JIy4YeHHe U3MeHsAeT pacnpejesieHie TeMIepaTyp Ha CTeHKe, CJIOKHUBIIEeCH 110/] BO3eiicTBHEM
OJHOII KOHBEKIUN.



